

OPEN ACCESS

SUBMITED 27 May 2025 ACCEPTED 23 June 2025 PUBLISHED 25 July 2025 VOLUME Vol.05 Issue07 2025

COPYRIGHT

© 2025 Original content from this work may be used under the terms of the creative commons attributes 4.0 License.

The Use of Modern Information Technologies in Chemistry Education and The Formation of Engineering Competencies

Tursunova Gulnoza Kakharovna

Karshi State Technical University, Uzbekistan

Abstract: This article investigates the integration of modern information technologies into chemistry education and its impact on the formation of engineering competencies among students. In the context of rapid technological advancements and growing demands for interdisciplinary skills, the education system faces the challenge of preparing graduates capable of navigating complex professional environments. The study explores the role of digital tools, simulation software, virtual laboratories, and online resources in developing both subject-specific knowledge and key engineering skills. Drawing on international experiences and empirical research, the article discusses effective strategies for embedding information technologies into curricula, analyzes pedagogical challenges, and highlights the transformative potential of technology-enhanced learning for fostering problem-solving, critical thinking, and innovation in future engineers.

Keywords: Chemistry education, information technology, engineering competencies, virtual laboratories, digital learning, STEM, educational innovation, simulation, competency-based education.

Introduction: The rapid pace of technological change in the 21st century has transformed the requirements for professional education, particularly in science and engineering disciplines. Chemistry, as a foundational science, underpins many engineering processes and industrial innovations. Therefore, chemistry education is increasingly recognized as a crucial arena for cultivating the broad set of skills demanded by the

modern workforce. Traditional approaches—anchored in lectures and manual experiments—while indispensable, often fall short of equipping students with the ability to engage with the digital tools, analytical software, and data-driven processes now ubiquitous in engineering practice.

Information and communication technologies (ICT) have profoundly altered the educational landscape. The incorporation of modern digital resources—including simulation platforms, virtual and remote laboratories, online assessment systems, and multimedia instructional materials—has enabled the transformation of both the content and the delivery of chemistry education. These innovations not only facilitate more flexible and personalized learning pathways but also mirror the realities of contemporary scientific and engineering work, where virtual experimentation, computational modeling, and collaborative online environments are standard.

Central to the development of engineering competencies are problem-solving, critical thinking, creativity, and the ability to work in multidisciplinary teams. Modern information technologies, when strategically integrated into chemistry education, can foster these abilities by expanding the scope of possible experiments, supporting inquiry-based and project-based learning, and providing students with the digital literacy required for professional success. The shift towards competency-based education further accentuates the need to align instructional strategies with the expectations of industry, making technology-enhanced learning a linchpin of curriculum reform.

However, the deployment of ICT in chemistry education is not without its challenges. Barriers such as uneven access to technology, varying levels of digital competence among teachers, resistance to pedagogical change, and the need for ongoing investment in infrastructure and training must be addressed to fully realize the potential of modern information technologies. In addition, the design and assessment of learning outcomes require careful attention to ensure that technological tools are used not as ends in themselves but as means to foster deeper understanding and transferable skills.

This article aims to analyze the use of modern information technologies in chemistry education with a focus on their role in the formation of engineering competencies. By synthesizing theoretical perspectives, reviewing current practices, and evaluating international experience, the study provides a comprehensive assessment of how digital innovation can advance the goals of chemistry and

engineering education in an interconnected world.

To investigate the impact of modern information technologies on chemistry education and engineering competency development, the study adopts a multifaceted research methodology. The analysis is grounded in a review of pedagogical literature, empirical studies, and policy documents, combined with case studies from leading educational systems. Primary sources include academic articles on technology-enhanced learning, curriculum frameworks from international organizations, and reports from educational ministries and professional associations.

Qualitative analysis focuses on documented best practices, teacher and student feedback, and reflective narratives from institutions that have implemented significant digital reforms in chemistry instruction. Quantitative insights are drawn from comparative studies, national and international surveys, and program evaluations assessing the effectiveness of ICT in improving learning outcomes and fostering key competencies.

The research includes an examination of various information technology tools commonly employed in chemistry education. These include interactive simulations and modeling software (such as ChemLab, PhET, and ChemDraw), virtual laboratory environments, electronic textbooks, online assessment systems, and platforms for collaborative project work. The role of learning management systems (LMS) and mobile applications is also considered, particularly in facilitating access to resources and supporting individualized learning trajectories.

International experience from countries such as the United States, Germany, Finland, Singapore, and South Korea is incorporated to highlight diverse approaches to technology integration. Case studies examine the adoption of digital laboratories, the development of blended and flipped classroom models, and the implementation of project-based learning supported by digital resources. Policy documents from UNESCO, OECD, and the European Commission are analyzed to identify emerging trends and standards in competency-based, technology-driven education.

To ensure the relevance of findings to contemporary educational contexts, attention is given to recent initiatives and the rapid expansion of digital learning environments in response to the COVID-19 pandemic. The accelerated adoption of remote teaching, virtual practicals, and online assessment during this period offers valuable insights into the possibilities and limitations of technology-enhanced chemistry education.

Through this comprehensive methodological approach,

the study aims to elucidate not only the pedagogical value of modern information technologies but also the systemic, organizational, and human factors that condition their effective use in cultivating engineering competencies through chemistry education.

The integration of modern information technologies into chemistry education has yielded substantial formation of engineering benefits for the competencies among students. One of the most significant outcomes is the enhancement of practical and theoretical understanding through virtual laboratories and simulation platforms. These digital tools allow students to conduct complex experiments that may be inaccessible in traditional settings due to cost, safety, or logistical constraints. For example, virtual simulations enable learners to manipulate variables, observe chemical reactions at the molecular level, and repeat experiments without the limitations of time or resources, thereby deepening conceptual understanding and technical skill.

Moreover, the use of information technologies has been shown to foster critical thinking and problem-solving abilities. Interactive learning environments encourage students to formulate hypotheses, design experiments, analyze data, and draw evidence-based conclusions—processes at the heart of both scientific inquiry and engineering practice. Digital tools such as modeling software and data analysis applications equip students with the competencies necessary to process complex information, model systems, and predict outcomes, bridging the gap between classroom learning and professional engineering tasks.

Collaborative platforms and online project management tools facilitate teamwork and communication—core engineering skills—by enabling students to work together on group assignments, share findings, and co-author reports in real time. These environments also introduce students to the norms of digital collaboration, preparing them for the realities of interdisciplinary and cross-border teamwork in modern industry.

Information technology enhances the personalization and adaptability of chemistry education. Adaptive learning systems can tailor instruction to individual student needs, providing targeted feedback and differentiated assignments that address varying levels of preparedness and learning styles. This approach supports the development of self-directed learning, an essential attribute for engineers who must continuously update their skills in a rapidly changing technological landscape.

The proliferation of open educational resources (OER), massive open online courses (MOOCs), and

educational video platforms further expands access to high-quality content and expert instruction. Students can supplement classroom learning with video lectures, online tutorials, and digital reference materials, ensuring continuous engagement and lifelong learning. In many engineering programs, digital portfolios and e-assessment tools are used to document and evaluate the acquisition of competencies, providing transparent evidence of skill development.

Empirical studies and institutional reports consistently demonstrate that students exposed to technology-rich learning environments exhibit higher levels of motivation, engagement, and achievement in both chemistry and engineering-related subjects. Data from international assessments, such as PISA and TIMSS, indicate that schools with robust digital infrastructure and effective ICT integration tend to outperform their counterparts in science literacy and problem-solving measures.

Nevertheless, the adoption of information technologies is uneven across educational systems, with disparities arising from differences in funding, infrastructure, teacher preparedness, and policy support. Surveys reveal that while many teachers acknowledge the value of digital tools, a significant proportion feel unprepared to implement them effectively, citing a lack of training, time, and technical support. Furthermore, the risk of superficial or passive engagement with technology—where digital resources are used to replicate rather than transform traditional practices—remains a challenge.

The COVID-19 pandemic catalyzed a global shift towards remote and hybrid learning, accelerating the deployment of virtual laboratories, online assessments, and synchronous video instruction. While this period underscored the importance of digital readiness, it also highlighted persistent gaps in access, digital equity, and the need for pedagogical innovation to maximize the benefits of technology for competency development.

The integration of modern information technologies into chemistry education offers transformative potential for the formation of engineering competencies, but its effectiveness hinges on a complex interplay of pedagogical, institutional, and systemic factors. Central to this process is the alignment of technology use with clear educational objectives and competency frameworks. When digital tools are purposefully embedded in curriculum design and instructional strategies, they can enhance conceptual understanding, facilitate inquiry-based learning, and promote the development of practical, analytical, and collaborative skills vital for engineering careers.

A key dimension of technology-enhanced chemistry education is the capacity to transcend traditional

constraints. Virtual laboratories and simulation software provide access to experiments that may be hazardous, prohibitively expensive, or otherwise impractical in a physical laboratory setting. These digital environments foster a culture of experimentation, where students are encouraged to take intellectual risks, learn from mistakes, and iterate on their approaches—hallmarks of engineering innovation.

The potential for information technologies to foster interdisciplinary connections is particularly significant. In modern engineering, the boundaries between disciplines are increasingly porous, and real-world problem-solving demands the integration of knowledge from chemistry, physics, mathematics, computer science, and beyond. Digital learning platforms support interdisciplinary projects, data-driven investigations, and the application of computational methods, preparing students for the multifaceted challenges of contemporary engineering practice.

Effective implementation of information technologies requires investment not only in hardware and software but also in the professional development of educators. Teachers must possess both digital literacy and pedagogical expertise to design meaningful technology-mediated experiences, facilitate online collaboration, and assess competency development. Institutional support for ongoing training, peer mentoring, and communities of practice is essential for building capacity and sustaining innovation.

A persistent challenge lies in ensuring equity of access and opportunity. The digital divide—whether due to socioeconomic disparities, geographic location, or infrastructure limitations—can exacerbate existing inequalities in educational attainment and career prospects. Policy makers and educational leaders must address these challenges by investing in universal access, providing devices and connectivity, and supporting vulnerable populations to engage fully with digital learning opportunities.

Another consideration is the assessment of engineering competencies in technology-rich environments. Traditional tests may be insufficient to capture the breadth and depth of skills developed through digital and project-based learning. Alternative assessment strategies, such as digital portfolios, performance-based tasks, and peer evaluation, are increasingly recognized as effective means to document and validate competency acquisition.

The role of modern information technologies in fostering lifelong learning cannot be overstated. As the pace of technological advancement accelerates,

engineers must continually update their knowledge and adapt to new tools and methodologies. Embedding digital learning strategies in chemistry education not only supports immediate learning objectives but also instills habits of self-directed inquiry, critical reflection, and adaptability that will serve graduates throughout their professional lives.

International experience demonstrates that countries with coherent strategies for technology integration, strong support for teacher professional development, and alignment of educational policy with industry needs achieve the most success in leveraging ICT for competency development. Collaboration between educational institutions, industry partners, and policy makers is vital to ensure that curricula remain relevant and that students graduate with the digital and engineering skills required by the labor market.

Looking ahead, the evolution of technologies such as artificial intelligence, augmented and virtual reality, big data analytics, and the Internet of Things (IoT) promises to further expand the frontiers of chemistry and engineering education. Preparing students to thrive in this dynamic environment will require ongoing innovation, research, and a commitment to equity and excellence in educational practice.

The use of modern information technologies in chemistry education represents a paradigm shift in the preparation of students for engineering careers. Digital tools, virtual laboratories, and online resources enable the development of engineering competencies that extend beyond traditional subject knowledge to thinking, problem-solving, encompass critical collaboration, and digital literacy. When strategically integrated into curricula and instructional practices, these technologies foster deeper learning, support individualized and project-based approaches, and prepare graduates for the demands contemporary workforce.

Overcoming barriers to effective technology adoption—including disparities in access, teacher readiness, and assessment practices—remains a critical priority. Policy initiatives, investment in infrastructure, and sustained professional development for educators are essential for bridging the digital divide and maximizing the potential of information technologies in competency formation.

The continued evolution of digital innovation in education will require collaborative efforts among educators, industry stakeholders, and policy makers to ensure that chemistry and engineering curricula remain responsive to societal and technological change. By embracing the opportunities afforded by modern information technologies, the education system can

empower students to become agile, innovative, and competent engineers ready to contribute to the progress of science and industry.

рекомендации и лучшие практики. – Москва: НИПКЦ, 2020.

REFERENCES

Ташкентбаева Н.А. Информационные технологии в обучении химии: современные тенденции и перспективы // Молодой ученый. — 2022. — №16. — С. 321—326.

OECD. Innovating Education and Educating for Innovation: The Power of Digital Technologies and Skills. – Paris: OECD Publishing, 2016.

Gilbert J.K., Justi R. Modelling-based Teaching in Science Education. – Cham: Springer, 2016.

Турсунов А.Б. Формирование инженерных компетенций в условиях цифровизации образования // Вопросы современной науки и практики. — 2023. — Neq (47). — C. 94-102.

National Research Council. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. – Washington, DC: National Academies Press, 2012.

Holman J. Laboratory Work in Science Education: A Necessary Evil? // Chemistry Education Research and Practice. – 2017. – Vol. 18, №1. – P. 1–3.

UNESCO. ICT in Education: A Critical Literature Review and Its Implications. – Paris: UNESCO, 2019.

Bybee R.W. The BSCS 5E Instructional Model and 21st Century Skills. – Colorado Springs: BSCS, 2014.

Туляганова Г.М. Применение виртуальных лабораторий в образовательном процессе по химии // Педагогика и психология образования. — 2021. — №5. — С. 77—83.

Мусаев И.Х. Компетентностный подход в профессиональной подготовке будущих инженеров // Высшее образование сегодня. — 2022. — $N \ge 8$. — C. 59—64.

European Commission. Digital Education Action Plan 2021–2027. – Brussels: European Commission, 2021.

Prensky M. Digital Natives, Digital Immigrants // On the Horizon. – 2001. – Vol. 9, №5. – P. 1–6.

Федоров А.В. Цифровые образовательные ресурсы: практика и проблемы использования в школе // Образование и наука. – 2020. – №3. – С. 117–123.

Yeo J., Tan S.C. Engaging Students in Virtual Laboratories for Chemistry Learning // Computers & Education. – 2021. – Vol. 163. – P. 104099.

OECD. Education at a Glance 2022: OECD Indicators. – Paris: OECD Publishing, 2022.

Национальная ассоциация преподавателей химии. Использование ИКТ в преподавании химии: