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Abstract: This paper analyzes the mathematical 
foundations and practical significance of piecewise 
polynomial methods based on the Haar orthogonal 
basis in the process of digital signal processing. 
Algorithms for calculating spectral coefficients in Haar, 
Schauder, and spline bases are compared, and their 
structural and computational efficiency is presented 
through graphs and formulas. In particular, the 
advantages of fast transform algorithms adapted for 
piecewise-constant, piecewise-linear, and piecewise-
quadratic bases are demonstrated, along with the 
challenges encountered during their implementation 
and possible solutions. It is shown that piecewise 
polynomial methods of the Haar transform can be 
effectively applied in signal processing systems that 
require high accuracy and speed. 
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Introduction: Digital signal processing has become an 
integral part of modern information technologies and 
electronics. One of the pressing challenges in this field 
is the identification of spectral characteristics within a 
signal and their efficient processing. In systems that 
require rapid processing, it is particularly important to 
reduce the number of computations, optimize memory 
usage, and maintain algorithmic simplicity [1,2]. From 
this perspective, algorithms based on the Haar 
orthogonal basis occupy a prominent position. In 
particular, the piecewise polynomial variants of the 
Haar transform — including piecewise-constant, 
piecewise-linear, and piecewise-quadratic bases — 
enable the analysis of signals in a segmented manner.  

METHODOLOGY 
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One of the key features of Haar bases is the availability 
of fast algorithms for determining spectral coefficients. 
Fast algorithms enable a reduction in the number of 
arithmetic operations and memory usage during digital 
signal processing. As a result, the use of orthogonal 
bases in digital signal processing leads to an increase in 

processing speed. Fast Haar transform algorithms are 
widely applied for digital signal processing tasks [1,3]. 

The discrete Fourier-Haar series can be expressed in the 
following form: 
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These discrete transformations are derived by 

adjusting the nC  coefficients relative to the ( )i nhar x   

Haar basis. The spectral coefficients are calculated using 
the following formulas: 
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Fast algorithms are available for the efficient 
computation of Haar transforms, and they are referred 
to as the Fast Haar Transform (FHT) algorithms. 

Fast Haar transform algorithm 

In the computation of the discrete Haar transform, 

2logN N  algebraic addition operations are 

performed. In the Fast Haar Transform (FHT), the 

number of required algebraic operations is 2( 1)N −  

[1, 3, 6, 7]. This is approximately 20,5log N  times 

fewer than the number of operations required in the 
standard discrete Haar transform algorithm. Therefore, 
in many practical applications, the use of the FHT 
algorithm for digital signal processing leads to a 
significant improvement in efficiency. 

 

Fig. 1. Fast Haar Transform graph as proposed by Andrews 

The fast algorithms for computing Haar coefficients are 
well-suited to the main characteristics of digital signal 
processors, as they primarily involve addition and 
subtraction operations. Representing the flow of  

signals and the sequence of computations in the form of 
a graph is an effective method for illustrating these 
processes. Figure 1 shows the graph of the FHT 
algorithm proposed by Andrews [3,6,7]. In these graphs, 
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the number of input values is 16N = . 

In the presented graph, continuous solid lines 
represent addition operations, whereas dashed lines 
correspond to subtraction operations. The input 

signals are indicated by ( ) ( ) ( )0 , 1 , , 1X X X N − , 

and the resulting Haar spectral coefficients are 

represented by ( ) ( ) ( )0 , 1 , , 1C C C N − . 

Based on the FHT graph proposed by Andrews 
mentioned above, the block diagram of the algorithm 
for computing the spectral coefficients is illustrated in 
Figure 2. 

 

Fig. 2. Block diagram of the fast Haar transform algorithm 

The key requirements for an efficient fast spectral 
transform algorithm are the minimization of the 
number of operations, the simplicity of each individual 
operation, and the reduction of memory consumption. 

Using the sources provided in the literature [1–6, 8], 
we compare fast transform algorithms based on the 
number of addition and subtraction operations 
required for the computation of spectral coefficients.  

In the Walsh Fast Transform algorithm, spectral 

processing of an array with 2kN =  elements requires 

2kk   addition-subtraction operations. In the Fast Haar 
Transform algorithm, the number of required 
operations is 2( 1)N − , while in the Hartley Fast 

Transform algorithm, 3 4N −  operations are required. 

Here, N  denotes the number of array elements, and 𝑘 
represents the number of iterations. 

Table 1. 

Comparison table of the number of arithmetic operations required for fast transform algorithms in one-
dimensional digital signal processing. 

Array size 

Fast Transform (FT) algorithm name 

Fast Fourier 
Transform 

Fast Walsh 
Transform 

Fast Haar 
Transform 

Fast Harmut 
Transform 
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N kN kN 2(N-1) 3N-4 

1024 10240 10240 2046 3068 

Table 1 presents a comparison of the number of 
arithmetic operations required for the computation in 
the fast transform algorithms of Fourier, Walsh, Haar, 
and Hartley transforms. According to the data 
provided in the table, when the number of input values 
is 1024, the Fourier and Walsh fast transforms require 
10,240 arithmetic operations, the fast Haar transform 
requires 2,046 operations, and the Fast Harmut 
Transform requires 3,068 operations. Thus, the fast 
Haar transform algorithm performs approximately 1.5 

times fewer operations than the Hartley fast transform 
and about 5 times fewer operations compared to the 
Fourier and Walsh fast transform algorithms. 

Piecewise polynomial methods of haar transform 

In this section, we analyze the feasibility of applying fast 
transform algorithms, originally developed for 
orthogonal piecewise-constant basis functions, to the 
computation of coefficients in piecewise-linear bases. 
When expressed using integral representations, the 
Fourier-Haar formulas take the following form: 
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This holds true only if the transformed signals ( )x r  

belong to the  )2 0,1L  metric space. 

In this case, the properties of the local basis functions 

can be utilized, namely, among the 2 p  functions of the 

same order, there is only one function pjh  that is 

nonzero within a given dyadic-rational interval 

The computation algorithm for the coefficients 
presented in expression (3) does not exhibit the 
characteristics of a fast transform. Nevertheless, when 
it is necessary to determine spectral coefficients within 
local bases, the finite difference method can be applied 
directly.  

For example, in the Schauder basis [6], the coefficients 
are calculated based on the following transformations: 
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Here, the Schauder fast transform algorithm based on 
the 'time-wise' reduction principles is presented. In 
expression (5), the sum on the right-hand side is 

divided into two parts: the first part includes the if  

differences with indices ranging from i=0 to i=n/2−1, 

and the second part includes the if  differences with 

indices ranging from i=n/2 to i=n−1: 
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The coefficients comprising the second half of the 
resulting vector, beginning from index n/2, can be 
computed during the first iteration. The sequence {

if } is partitioned into n/4 groups, each consisting of 

two adjacent elements, if2  and 12 + if , to which  

the discrete Haar transform formula is subsequently 
applied for each pair: 

/2 2 2 1, 0,1,..., / 2 1N j j jC f f j N+ +=  − = −  

In the second iteration, the sequence is divided into 
groups consisting of 8 elements; in the fourth iteration, 
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into groups of 16 elements, and so on. The 
corresponding values are determined according to the 

following formulas: 
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The coefficients 1C  and 0C  in the final iteration are determined using the following formula: 
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The graph representation of the Schauder fast transform algorithm for N=16 input values is shown in Figure 3. 

 

Fig. 3. Fast Transform Graph Based on the Schauder Basis 

Thus, this algorithm enables the use of fast transform 
graphs based on orthogonal piecewise-constant basis 
functions for computing coefficients in piecewise-
linear bases. A limitation of this algorithm is the 
difficulty that arises when dealing with small values of 

the if  finite differences. 

The analysis of coefficient computation methods 
across different bases has shown that such methods 

are available only for piecewise-constant and piecewise-
linear bases. For piecewise-quadratic bases, coefficient 
computation methods have not yet been developed. 

In fast transform algorithms utilizing local bases, the 
number of coefficients within groups of the same order 
is characterized by an exponential decrease as the 
number of iterations increases. This property can be 
exploited in the development of specialized high-speed 
computational architectures. 
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We proceed to examine a convergent series constructed from piecewise-quadratic Haar functions. 
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A drawback of the given series is the absence of fast 

algorithms for computing the k
C  coefficients. This 

limitation can be overcome using a parabolic spline. If 
the second derivative of an interpolating parabolic 
spline of the function ( )f x  over the interval [0,1] is  

taken, the result is a piecewise-constant function with 
step changes at the spline nodes, which can be 
expanded into a series based on the piecewise-constant 
orthogonal basis functions. As an example, we consider 
the expansion of the spline derivative into the Haar 
series: 
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According to the theorems concerning finite 
convergence and the integration of closed systems, the 

integration of both components leads to the following 
outcome: 

1

2 2 2

00

( ) 2 ( ) ( ) (0)

x N
p

k k

k

S x S u du C hain x S
−

=

  = = +

 

1

2 2 2 2 2

00

( ) ( ) (0) ( ) (0) (0)

x N

k k

k

S x S u du S C haid x S S
−

=

 = + = + +

 

Consequently, at dyadic-rational interpolation nodes, 
the second derivative of the parabolic spline 
corresponds to the expansion of the interpolated 
function into a series of coefficients with respect to the 
Haar orthogonal basis functions. The first derivative of 
the spline corresponds to the expansion with respect 

to the hain  basis functions, while the spline itself 
corresponds to the expansion with respect to the 

haid  basis functions. The coefficients are 
determined from the linear component of the spline 
expansion, specifically, the first derivative evaluated at 
x=0 defines the linear term, whereas the constant  

 

component is given by the value of the spline )(2 xS  at 

the same point. 

One of the most important properties of spline 
functions is the existence of higher-order derivatives. 
This feature enables the development of a hardware-
oriented algorithm for computing coefficients within 
piecewise-parabolic bases, consisting of the following 
steps: 

1. Input of the initial functional relationship, i.e., 
entering the set of real experimental data. 

2. The b-coefficients are calculated according to the 
following formula: 

( )1 1

1
10

8
i i i ib f f f− += − + −                                        (10) 

The values approximating the spline )(2 xS  are determined according to the following formula: 

2 1 1 0 0 1 1( ) ( ) ( ) ( ) ( )f x S x b B x b B x b B x− − =  +  +                  (11) 

In this case, second-order derivatives are employed in 
place of the basis function values: ( ) 1B x =  on the 

interval [−1.5,−0.5], ( ) 2B x = −  on [−0.5,0.5], and 

( ) 1B x =  on [0.5,1.5].  

 

2 1 1 0 0 1 1( ) ( ) ( ) ( ) ( )f x S x b B x b B x b B x− −
    =  +  +               (12)

As a result of these calculations, an array of values 
approximating the second derivative of the spline  

)(2 ixS   is obtained. 
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3. Formation of the )(2 ixS   array 

4. Fast transforms are performed on the elements of 
the obtained array using a fast transform graph, 
and the coefficients are determined. These 
coefficients constitute the piecewise-quadratic 
basis coefficients. 

The spectral coefficients are determined from the 

elements of the )(2 ixS   array using the fast transform 

algorithms presented above. These coefficients 
correspond to the coefficients in the piecewise-
quadratic basis.  

RESULTS 

To assess the potential of digital signal 
processing based on Haar piecewise-polynomial bases, 
an investigation was carried out involving both an 
analytical function and geophysical signal data derived 
from experimental observations. 

Table 2. 

Research Results on Digital Signal Processing Using Haar Piecewise-Polynomial Methods 

 
Type of function 

N 

Piecewise-
constant Haar 

basis 
Piecewise-linear 

Haar basis 

Piecewise-
quadratic Haar 

basis 

𝑵𝟎% 𝑲𝒄 𝑵𝟎% 𝑲𝒄 𝑵𝟎% 𝑲𝒄 

𝒀 = 𝐬𝐢𝐧𝐡(𝒙) 1024 10,94 1,12 93,75 16,00 96,48 28,44 

Geophysical 
signal 

1024 9,38 1,11 38,28 1,62 78,13 4,57 

 

The research results are presented in Table 2. In this table, the values are determined as follows.: 

𝐾𝑐 = 𝑁/(𝑁 −𝑁0) 

N – Number of array; 

N0% - Percentage of zero-valued coefficients; 

Кc –  Compression coefficient. 

As can be seen from the table, when performing digital 
processing of values obtained from analytical functions 
using piecewise-polynomial bases, it was found that 
the percentage of coefficients equal to zero is 
approximately 11% for the piecewise-constant basis, 
94% for the piecewise-linear basis, and 96% for the 
piecewise-quadratic basis. Similarly, when processing 
real data arrays obtained from geophysical 
observations, these percentages were determined to 
be 9%, 38%, and 78%, respectively, for the piecewise-
constant, piecewise-linear, and piecewise-quadratic 
bases. This, in turn, demonstrates that the level of data 
compression and computational optimization 
achievable in digital calculations is exceptionally high. 
Thus, the use of piecewise-polynomial bases not only 
improves accuracy but also enables more efficient 
utilization of computational resources. 

CONCLUSION 

The research results demonstrate that piecewise-
polynomial algorithms based on the Haar  

orthogonal basis provide high efficiency in digital signal 

processing. Transformations using the Schauder basis 
and the application of parabolic splines enable 
improved accuracy in the determination of spectral 
coefficients. In particular, for piecewise-quadratic 
bases, spline-based algorithms not only reduce 
computational complexity but also preserve higher-
order derivatives effectively. 
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